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Abstract. The paper This article presents an application of the Kalman filtering technique to estimate loads on a wind turbine.

The approach combines a mechanical model and a set of measurements to estimate signals that are not available in the mea-

surements, such as: wind speed, thrust, tower position, and tower loads. The model is several fold faster than real-time and is

intended to be run online, for instance, to evaluate real-time fatigue life consumption of a field turbine using a digital twin,

perform condition monitoring, or assess loads for dedicated control strategies. The mechanical model is built using a Rayleigh-5

Ritz approach and a set of joint coordinates. The paper article presents a general method and illustrates it using a 2 degrees of

freedom model of a wind turbine, and, using rotor speed, generator torque, pitch, and tower-top acceleration as measurement

signals. The different components of the model are tested individually. The overall method is evaluated by computing the errors

in estimated tower bottom equivalent moment from a set of simulations. From this preliminary study, it appears that the tower

bottom equivalent moment is obtained with about 10% accuracy. The limitation of the model and the required steps forwards10

are discussed.

DOF degrees of freedom

KF Kalman filter

FA Fore-Aft

TT tower-top15

TB Tower bottom

SS Side-side

1 Introduction

Wind turbines are designed and optimized for a given site or class definition using numerical tools, and, using a statistical

assessments of the environmental conditions the turbine will experience. The uncertainty on the tools and data are accounted20
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for using multiplicative safety factors , which that are determined from a combination of experience and specifications by the

standards. Overconservative safety factors will imply unnecessary costs which that may be later on alleviated by extended

extending the life time of a project. An under estimate of the safety factor will likely lead to catastrophic failures. Once a

design is complete and the product is in place, is it possible to predict what the life time of the wind turbine will be?

Digital twins are becoming increasingly popular to follow the life cycle of a physical system. This concept is used to bridge25

the gap between the modelling and measurement realm: real time measurement from the physical system are communicated

to a digital system and this information is combined with a numerical model to estimate the state of the system and potentially

predict its evolution. A Kalman filter (KF) is an example of technique that can be used: it combines a model of a system with a

set of measurements on this system to predict additional variables, such as positions or loads at points where no measurements

are available. Other approaches are for instance: inverse methods, or neural network methodsIn this study we focus on KF30

methods, but other load estimation techniques may be used, such as: lookup table Mendez Reyes et al. (2019), modal expan-

sions Iliopoulos et al. (2016), machine learning Evans et al. (2018), neural-networks Schröder et al. (2018), polynomial chaos

expansion Dimitrov et al. (2018), deconvolution Jacquelin et al. (2003), or load extrapolation Ziegler et al. (2017).

Kalman filters have been extensively used in control engineering with a wide range of applications. Auger et al. (2013) pro-

vide a review of some industrial applications. Load estimation using KF are found,e.g. in the following references Ma and Ho (2004); Eftekhar Azam et al. (2015)35

. In the context of wind energy, wind speed estimation is critical for the determination of the dynamics of the system. This

topic was for instance investigated using parametric models by Bozkurt et al. (2014), using Kalman filters by Østergaard

et al. (2007), Knudsen et al. (2011), or Song et al. (2017), and using Luenberger type observer by Hafidi and Chauvin (2012).

A comparison of wind speed estimation technique is found in Soltani et al. (2013). Soltani et al. (2013). The techniques were

extended to also estimate the wind shear and turbine misalignments (see e.g. Bottasso et al. (2010), Simley and Pao (2016),40

Bertelè et al. (2018)). Kalman filtering has been used to estimate rotor loads and wind speed in application to rotor controls by

Boukhezzar and Siguerdidjane (2011). Kalman filtering was recently used by Belloli (2019) to estimate the sea state based on

the knowledge of the offshore platform position. More general approaches use Kalman filtering in combination with a model of

the full wind turbine dynamics. These approach approaches were used for wind speed estimation and load alleviation via indi-

vidual pitch control (Selvam et al. (2009), Bottasso and Croce (2009)), and for online estimation of mechanical loads Bossanyi45

(2003). An example of estimating tower loads with the acceleration sensor is for instance found in the report of Hau (2008).

Bossanyi et al. compared the observed rotor and tower loads with measurements, and investigated the potential of the control

method to reduce damage equivalent loads (Bossanyi et al., 2012).

The methodology presented in this article uses an augmented KF (Lourens et al. (2012)) to estimate loads on the wind turbine

based on measurement signals commonly available in the nacelle. The method builds on the approach used by Bossanyi et al.50

and Lourens et al. The method of Lourens et al. is generalized. On the other hand, the expression of the mechanical system

may be seen as simplified compared to the approach of Bossanyi et al.: a Rayleigh-Ritz formulation is used and the system is

not further linearized. The equations are given in full for a 2 degrees of freedom system, and the source code is made available

online. The time series of estimated loads are applied to assess the fatigue life consumption of the turbine components using

the rainflow counting method. The study focuses on the determination of tower loads of onshore wind turbine. A scheme of the55
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method is provided in Figure 1. The numerical model of the wind turbine relies on a Rayleigh-Ritz shape-function approach

Measurements y
- Generator torque Qg

Operating turbine

Tabulated data:
Ω,θp

Ta

Turbine model

- Rotor speed Ω

- Pitch θp
- Tower top acceleration

- CP (λ,θp)

- CT (λ,θp)

Kalman filter

y

- Previous states xk−1

- Current inputs u = [Ta,Qg,θp]

- Noise levels Q,R

Estimated states xk

- Structural DOF q

- Aerodynamic torque Qa

Qa

Tower loads
and fatigue

Wind speed and thrust
estimation

- Current measurements y

- State space model Xx,Xu,Yx,Yu

Figure 1. Main components of the model: wind turbine measurements and a turbine model are combined to estimate tower loads. A wind

speed estimator and a Kalman filter algorithm are used in the estimation. Turbine model dependencies are framed in blue.

with reduced numbers of degrees of freedom (Branlard (2019a)). The wind speed is estimated using an approach similar to

Østergaard et al. (2007), and the thrust force estimation is based on this wind speed estimate. The generator torque, the rotor

speed, and the tower-top accelerations are used as measurements and combined with the numerical model with within an

augmented KF. The time series of loads in the tower are determined based on the tower shape function and the tower degrees60

of freedom, and the fatigue loads are computed from this signal. It is noted that the method is expected to be more accurate at

the tower-bottom than the tower-top because rotor asymmetric loading cannot be captured from the acceleration measurement.

The first part presents the different components required for this work: the augmented KF, the numerical model of the

turbine, and the estimators for the wind speed, thrust, tower load, and fatigue. Simple illustrations and validation results for65

the different components of the model are provided in a second part. The third part presents full applications but limited to

simulations. Discussions and conclusions follow.

2 Description of the models

2.1 Example for a 2DOF wind turbine model

We start this section by an illustrative example, before describing the different parts of the model in their general form. A wind70

turbine is here modelled using 2 DOF: 1) the generalized coordinate associated with the fore-aft (FA) bending of the tower, qt;

2) the shaft rotation, ψ. The tower bending is associated with a shape function Φt(z), such that the FA displacement of a point,

at height z, and at time t, is given by u(z, t) = qt(t)Φt(z). The shape function is normalized to unity at the tower-top, and qt is
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then equal to the FA displacement at the tower-top (see Figure 2). The equations of motion of the system are:M 0

0 J

q̈t
ψ̈

+

C 0

0 0

q̇t
ψ̇

+

K 0

0 0

qt
ψ

=

 T ∗
a

Qa−Qg

 (1)75

where: M , C, K are the generalized mass, damping and stiffness associated with the FA DOF; J is the drivetrain inertia; T ∗
a

and Qa are the aerodynamic thrust and torque; and Qg is the generator torque. A star is used as upper-script of the thrust to

indicate that using the thrust directly is a rough approximation. A more elaborate expression of the generalized force acting on

qt is given in Section 3.3. The determination of M , C and K is discussed in Branlard (2019a). For the NREL-5MW turbine,

the values are: M = 4.4e5 kg, D = 2.5e4 kg/s, K = 2.7e6 kg/s2 and J = 4.3e7 kg.m2. We tuned the damping term C to80

account for aerodynamic damping, as mentioned in Section 3.3. Aerodynamic stiffness is included in T ∗
a . In this example, the

system of equations is only coupled via the aerodynamic loads.

The following measurements are usually readily available on any commercial wind turbine: the generator power, Pg; the

blade pitch angle, θp; the rotor rotational speed, Ω
4
= ψ̇. and the tower-top acceleration in the FA direction, q̈t; The knowledge

of the generator power, speed and losses allows to estimate the for the estimation of the generator torque Qg . In this study,85

the generator torque is assumed known. We will use an augmented KF concept to combine these measurements with the

mechanical model to estimate the state of the system. The KF algorithm requires linear state and output equations. The state

vector is assumed to be x = [qt,ψ, q̇t, ψ̇,Qa]. The fact that some of the loads were included into the state vector is referred

to as state augmentation“state augmentation”. The choice of loads to include in the state vector is not unique and will lead to

different state equations. Using this choice for x, we write Equation 1 is written into the following state equation:90 

q̇t

ψ̇

q̈t

ψ̈

Q̇a


=



0 0 1 0 0

0 0 0 1 0

−M−1K 0 −M−1C 0 0

0 0 0 0 J−1

0 0 0 0 0





qt

ψ

q̇t

ψ̇

Qa


+



0 0 0

0 0 0

M−1 0 0

0 −J−1 0

0 0 0




T ∗
a (ψ̇,Qa,θp)

Qg

θp

 (2)

where for simplicity the time derivatives of the aerodynamic torque is assumed to be zero, an assumption referred to as “random

walk” force model. This assumption accounts of saying that the estimate of the torque at the next time step is likely to be close

to the one at the current time step. Improvements on this will be discussed in Section 5. The thrust is determined based on the

rotor speed, the aerodynamic torque, and the pitch angle, using tabulated data, as described in Section 2.4. The output equation95

relates the measurements to the states and inputs as follows:
q̈t

ψ̇

Qg

θp

=


−M−1K 0 −M−1C 0 0

0 0 0 1 0

0 0 0 0 0

0 0 0 0 0

x+


M−1 0 0

0 0 0

0 1 0

0 0 1



T ∗
a

Qg

θp

 (3)

Equation 2 and Equation 3 are used within a KF algorithm to estimate the states vector based on the measurements. The

estimated time series of qt, together with its associated shape function Φt, are used to determine the bending moments within
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the tower and estimate tower fatigue loads, based on the method presented in Section 2.5. Results from this simple model will100

be provided in Section 3. The remaining paragraphs of this section generalize the approach presented.

2.2 Mechanical model of the wind turbine

The wind turbine is described using a set of degrees of freedom (DOF) that consist of joints coordinates and shape func-

tions coordinates. The method was described in previous work (Branlard, 2019a), and the source code made available online,

via a library called YAMS (Branlard, 2019b). Similar approaches are for instance used in the elastic codes Flex and Open-105

FAST (OpenFAST, 2020). The advantage of the method is that the system can be described with few DOF. The number of

DOF is between 2 and 30 DOF whereas traditional finite element methods require in the order of one thousand DOF.

The only joint coordinate retained in the current model is the shaft azimuthal position, noted ψ. The shaft torsion, and nacelle

yaw and tilt joints can be added without difficulty. The tower and blades are represented using a set of shape functions taken as

the first mode shapes of these components. The shape functions of the tower are assumed to be the same in the FA and side side110

(SS) directions, which that are respectively aligned with the x and y directions (see Figure 2). The number of shape functions

are noted nxt, nyt and nb for the tower FA, tower SS, and blade respectively. Writing B the number of blades, ns the number

of DOF representing the shaft, the total number of DOF is: nq = ns +Bnb +nxt +nyt. The tower DOF are written qxt,i with

i ∈ [1..nxt] and qyt,i with i ∈ [1..nyt]. Similar notations are used for the blade DOF.

T xt

zt

N
qt

Φt,1(z)Φt,2(z)

zt

xt

ψ,Ω,Qa

(a) (b)

θtilt G

R

Ta

ν1
1

R

Lt

αy

Figure 2. (a) Notations for the wind turbine model and (b) example of shape functions used for the tower. Definition of points: T, tower

bottom; N, tower-top; G, center of mass of the rotor nacelle assembly; R, rotor center. The shape functions are normalized to unity at point

N . The slope at the extremity of the first shape function is written ν1
4
=

dΦt,1

dz
(Lt).

The equation of motions are established using Lagrange’s equation. The example presented in Section 2.1 corresponds to115

ns = 1, nb = 0, nt,SS = 0 and nt,FA = 1. An example for a 5DOF system, with ns = 1, B = 2, nb = 1, nt,SS = 0 and nt,FA = 1,
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is given in Branlard (2019a). In the general case, the equation of motions are described as:

M q̈+Cq̇+Kq = f →

q̇
q̈

=

 0 I

−M−1K −M−1C

q
q̇

+

 0

M−1f

 (4)

where M , C, K are the mass, damping, and stiffness matrices; q is the vector of DOF; and f is the vector of generalized

loads acting on the DOF. An inconvenience of the method is that the mass matrix is a non-linear nonlinear function of the120

DOF. The main assumption of this work is that the non-linearities nonlinearities can be discarded as a first approximation. This

assumption is further discussed in Section 5.

2.3 Augmented Kalman filter applied to a mechanical system

A description of the standard KF can be found e.g. in the textbook of Grewal and Andrews (2014) or Zarchan and Musoff

(2015). The algorithm will not be detailed in this paperarticle. The method expect a state and output equations of the following125

form:

ẋ = Xxx+Xuu+wx (state equation) (5)

y = Yxx+Yuu+wy (output/measurement equation) (6)

where x, u and y are the state, input, and measurement vectors ; Xx, XyXu, Yx and Yu are Jacobian matrices describ-

ing the expected relationships between measurements, states and inputs ; and wx and wy are Gaussian uncorrelated noises130

associated with the state-space model and measurements respectively, of which the associated covariance matrices are noted

Q = E[wxw
t
x] and R = E[wyw

t
y], with E[wxw

t
y] = 0and , E the expected value operator, and the subscript t representing

a transpose. We will develop these equations in the case of a mechanical system that follows the general form of Equation 4.

Specific applications will be given in Section 3 and Section 4.

Different approaches can be used to write Equation 4 in the form of Equation 5, depending how the force vector is to be135

treated. In a first approach, the forces can be considered to be inputs f = u, in which case Equation 4 is directly in the form

of Equation 5, with x = [q, q̇]. This implies that we have full knowledge of the forces acting on the system at every time

step, which is unlikely. In a second approach, the forces can be assumed to be part of the system noise, wx, which would

lead to x = [q, q̇], and B = 0. This is obviously a crude approximation since because the forces acting on the system are non

stochasticnonstochastic, and, we likely have some knowledge on them. In the intermediate approach introduced by Lourens et140

al. (Lourens et al., 2012), some of the forces are included in the system noise, and others as part of the states. The We write

the reduced set of loads that are part of the states is written state p, of length np, and the full force vector is assumed to be

approximated by: f ≈ Spp, where Sp is a matrix of dimension nq ×np. The reduced set of forces, p, is integrated into the

state vector as: x = [q, q̇,p]. This process is referred to as state augmentation“state augmentation”.

We introduce a generalized approach and assume that the forces are a combination of states, inputs and unknown noise:145

f ≈ Fqq+Fq̇q̇+Fpp+Fuu+wf ≈+Fqq+Fq̇q̇+Fpp+Fuu (7)
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where the F• matrix represent the Jacobian of the force vector with respect to vector •, and wf are unknown forces that are

assumed to be part of system disturbance wx. The terms Fq and Fq̇ are linearized stiffness and damping terms. These terms

are zero if their contributions are already included in the definitions of K and C. In practice, the linearization of the force

vector may not be possible, and assumed relationships or engineering models are used. As an example, if p contain the thrust150

force and f the moment at the tower base, the appropriate element of Fp could be set with the lever arm between tower-top

and tower base.

This approach allows us to use the knowledge we have of some of the main loads acting on the system and express their

dynamics into the state-space equation. The forces may for instance be assumed to follow a first order system as follows:

ṗ = Pqq+Pq̇q̇+Ppp+Puu (8)155

where the P• matrices are obtained from a knowledge of the force evolution. Second order system could also be introduced, in

which case the state needs to be augmented with both p and ṗ (“random walk” force model). For simplicity, the applications

used in this work will assume ṗ = 0, but future work will investigate the benefit of using first order systems for the evolution

of the forces.

Inserting Equation 7 into Equation 4, introducing x = [q, q̇,p], and using Equation 8, a state equation of the form of Equa-160

tion 5 is obtained:

Xx =


0 I 0

−M−1(K −Fq) −M−1(C −Fq̇) M−1Fp

Pq̇ Pq Pp

 , Xu =


0

M−1Fu

Pu

 (9)

The measurements are assumed to be a combination of the acceleration, velocity, displacements, loads and inputs:

y ≈ Ỹq̈q̈+ Ỹq̇q̇+ Ỹqq + Ỹpp + Ỹuu (10)

Inserting The matrix Ỹq̈ is here introduced for convenience when a simple relationship exists between outputs and DOF165

accelerations, but this term can be omitted altogether and should not be double counted. Indeed, the acceleration q̈ can be

isolated from Equation 4into , an output , and then expressed as a function of q̇, p and u. If an automated linearization procedure

is used, then the acceleration term should be skipped because it would otherwise be redundant. The output relationship would

then be:

y ≈Yq̇q̇+Yqq +Ypp +Yuu (11)170

The link between the two formulations is provided using Equation 4, giving:

Yq = Ỹq − Ỹq̈M
−1K, Yq̇ = Ỹq̇ − Ỹq̈M

−1C, Yp = Ỹp + Ỹq̈M
−1Fp, Yu = Ỹu + Ỹq̈M

−1Fu (12)

An output equation of the form of Equation 6 is obtained, with: directly obtained, as:

Yx =
[
Yq, Yq̇, Yp

]
, Yu = u+Yq̈

−1
uu (13)
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Equation 9 and Equation 13 form the bridge between the definition of the mechanical model and the state and output equations175

needed by the KF algorithm.

Equation 5 and Equation 6 are in continuous form, whereas the KF algorithm uses discrete forms. The discrete form of the

matrices perform the time integration of the states from one time step to the next, namely: xk+1 = Xxd
xk +Xu,dukxk+1 =

Xx,dxk +Xu,duk, where the subscript d indicates the discrete form of the matrices and k is the time step index. The matrix

Xx,d is referred to as the fundamental matrix“fundamental matrix”. For time-invariant systems, this matrix may be obtained180

using Laplace tranform transform or by Taylor-series expansion (Zarchan and Musoff, 2015). For a given time step ∆t, the

discrete matrices corresponding to Xx and Xu are:

Xx,d = eXx∆t = I +Xx∆t+
(Xx∆t)2

2!
+ . . .≈ I +Xx∆t (14)

Xu,d =

dt∫
0

Xx,d(τ)Xu dτ ≈ [Xx,d− I]X−1
x Xu ≈Xu∆t

The approximation in Equation 14 is effectively a first order forward Euler time integration. The matrix Yx and Yu remain185

unchanged by the discretization since the ouput because the output equation is an algebraic equation involving quantities at the

same time step.

Many choices are possible as to how the model may be formulated: which forces should be accounted for in the reduced set

p, which forces should be assumed to be obtained from the inputs, which models to use for the P matrices, etc. Since the The

study is limited to onshore wind turbines, thereby the main loads are the aerodynamic thrust and torque. A subtlety to account190

for, is that some of the forces of the model presented in Equation 4 are generalized forces, which and are projection of loads

onto the shape functions (Branlard, 2019a). An example will be given in Section 3.3.

The Jacobian matrices introduced should be determined by linearization about an operating point. The mass matrix should

also be linearized about such point. In the current work, the non-linearities nonlinearities are either neglected, or directly in-

serted into the expression presented without performing a linearization. This crude simplification will be discussed in Section 5,195

in light of the results presented in Section 3 and Section 4.

2.4 Wind speed and thrust estimation

In this paragraphIn this section, Qa, θp and Ω are assumed to be given. The aerodynamic power and thrust coefficients, CP

and CT , are also assumed to be known as function of the pitch angle and tip speed tip-speed ratio, λ= ΩR/U0, where R is

the rotor radius and U0 the wind speed. The functions CP (λ,θp) and CT (λ,θp) are estimated by running a parametric set of200

simulations at constant operating conditions. Some uncertainty is here present as to whether the real turbine does performs

perform as predicted by these functions. This question will be considered in Section 5. The aerodynamic torque is computed

from the tabulated data as:

Qa,tab (U0,Ω,θp) =
1

2
ρπR2U

3
0

Ω
CP

(
ΩR

U0
,θp

)
(15)
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The wind speed is obtained by solving the following non-linear constraint equation for uest:205

Find uest,such that Qa−Qa,tab (uest,Ω,θp) = 0

where ρ is the air density, which is another potential source of uncertainty to be considered when dealing with measurements.

The wind speed is obtained by solving the following nonlinear constraint equation for uest:

Find uest,such that Qa−Qa,tab (uest,Ω,θp) = 0 (16)

The wind speed determined by this method is assumed to be the effective wind speed acting over the rotor area. A correction210

for nacelle displacements is discussed in Section 5. The aerodynamic thrust is estimated from this wind speed as:

Ta,est = Ta,tab (uest,Ω,θp) , with Ta,tab (U0,Ω,θp) =
1

2
ρπR2U2

0 CT

(
ΩR

U0
,θp

)
(17)

2.5 Tower loads and fatigue estimation

The deflection of the tower, U , in the x or y directions, at a given height z, and a given time t, is given by the sum of the tower

shape functions scaled by the tower degrees of freedom:215

Ux(z, t) =
∑
i

qxt,i(t)Φt,i(z), Uy(z, t) =
∑
i

qyt,i(t)Φt,i(z) (18)

The curvature, κ, is obtained by differentiating the deflection twice, giving:

κx(z, t) =
∑
i

qxt,i(t)
d2Φt,i

d2z
(z), κy(z, t) =

∑
i

qyt,i(t)
d2Φt,i

d2z
(z) (19)

The bending moments along the tower heights height are then obtained from the curvatures using Euler beam theory:

My(z, t) = EI(z)κx(z, t), Mx(z, t) = EI(z)κy(z, t) (20)220

where EI is the bending stiffness of a given tower cross section. The time series of bending moment are processed using a rain

flow counting algorithm to estimate the equivalent loads and damage (International Standard IEC, Workgroup 3, 2005).

3 Simple applications and validations

3.1 Wind speed estimation

The In this section we illustrate and evaluate the wind speed estimation methodology presented in Section 2.4is illustrated225

and evaluated in this section. Tabulated . We computed tabulated CP and CT values were obtained for the NREL-5MW

turbine (Jonkman et al., 2009) using the multi-physics simulation tool OpenFAST (OpenFAST, 2020). A turbulent simulation

was devised We devised a turbulent simulation such as to sweep through the main operating regions of the wind turbine within

a 10-min period, namely: the startup region (region 0), the optimalCp tracking region (region 1), rotor-speed regulation (region

9



2), and power regulation (region 3). For the NREL-5MW turbine region Region 2 has a small span and it is here for the NREL-230

5MW turbine, it is thereby gathered with region 3. The turbine was simulated We simulated the turbine with all the DOFs

turned on . The following variables were extracted and extracted the following variables from the simulation at 50Hz: ūref,

the average wind speed at the rotor plane; Qa,ref, the aerodynamic torque; Ta,ref the aerodynamic thrust; Ωref the rotational

speed; and θp,ref the pitch angle. The wind speed, uest, was estimated using the method presented in Section 2.4. The results

are presented in Figure 3 and commented below.
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The absolute error in wind speed is observed to be mostly within ±0.5m/s, both values being indicated by two dashed lines

on the left figure. The error is greatest in region 0 where the generator torque is not yet applied. A separate wind speed method

should be devised for this case. The mean relative error for the entire time series is ε= 2.5%. The estimated wind speed is seen

observed to follow the challenging trends of this time series, matching both the low and high frequencies. In the top zoom, it is

seen that no phase lag is observed in the estimated wind speed, but the estimated value is seen to overshoot.240

There are several potential sources of errors in the current methodology. One concern is whether the unsteady aerodynamic

torque, can be determined using a look-up table that uses instantaneous values. overshooting. The relative error between the

unsteady torque Qa,ref and the tabulated torque, Qa,tab(ūref,Ωref,θp,ref), is used as the x-axis on the right of . A wide range of

values is obtained, with the error varying between −40% and 20%. Such estimation of the torque is likely to be accurate only

for slow varying wind fields, where the effects of dynamic wake and dynamic stall on the blade loading will be limited. The245

tabulated method may be improved by accounting for these unsteady aerodynamic effects (discussed in ). Another question is

whether the effective wind speed, that characterizes the aerodynamic forces on the turbine, is indeed the average wind speed

at the rotor plane. The relative error between ūref and uest is used as y-axis on the right figure. A large error on this axis may

not necessarily indicate Overall, the results from the test case are encouraging. It is not expected that the estimated wind speed
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is wrong, since indeed this estimated wind speed is such that Qa =Qa,tab(uest,Ωref,θp,ref), as a result of the minimization250

involved in . The estimated wind speed may thus be expected to be different from the rotor averaged corresponds exactly to

the rotor-averaged wind speed. During the startup period, the error in wind speed can be large and is uncorrelated to the error

in torque, yet a stronger correlation is seen when the turbine is producing power. Looking at the probability density functions

given in the right of , it is seen that the errors in torque and wind speed are centered on zero. The fact that both errors are

centered on zero, indicate that when the unsteady torque can indeed be obtained using instantaneous values and tabulated data,255

the (estimated) effective wind speed is close to the average wind speed at the rotor . Other sources of errors are discussed in .

A more thorough study on the questions raised above are left open for future work. Overall, the results from the test case

are encouraging. Instead, it is a proxy to assess the instantaneous aerodynamic rotor state. Wind speed estimation is a standard

feature of most wind turbine controllers, and it is likely that more advanced features are implemented by manufacturers. Any

improvement on the methodology used in the current paper will would be beneficial for the procedure of loads estimation260

presented in this work.

3.2 Thrust estimation

The wind speed estimated in is used to estimate the thrustThe estimated thrust, Ta,est, is computed with Equation 17 and the

wind speed estimated in Section 3.1. In Figure 4, the estimated thrust value is compared to the unsteady aerodynamic thrust

from the simulation, Ta,ref. The values of Ta,tab(ūref,Ωref,θp,ref) are also shown in the figure. For this simulation, the The thrust
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Figure 4. Comparison of aerodynamic thrusts: Ta,ref, obtained from a reference simulation; Ta,tab(ūref), obtained from tabulated CT and the

rotor averaged wind speed from the simulation; Ta,est = Ta,tab(uest), obtained from the estimated wind speed. (Left:) Time series of thrust

and absolute errors compared to the Ta,ref. (Right:) Scatter plot of the tabulated thrust compared to the reference thrust.
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signal was obtained with a mean relative error of 1.5% over the range of operating conditions considered. Using The use of

the estimated wind speed is seen to produce thrust values closer to the reference thrust than if ūref is used. In line with the

discussions of Section 3.1, this could support the fact that the estimated wind speed provides an effective velocity, consistent
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with the instantaneous state of the rotor, but different from the rotor averaged rotor-averaged wind speed. Yet, it is also possible

that compensating errors are at play, or, that the thrust is less sensitive to changes of wind speed or drive-train dynamics than the270

torque. Despite these open questions, we continue by assuming the method provide that the method provides thrust estimates

with sufficient accuracy.

3.3 Reduced model of the mechanical system

The 2-DOF mechanical model presented in Section 2.1 is here compared to the more advanced OpenFAST model consisting of

16 DOF. As mentioned in Section 2.1, the generalized force acting on qt can be further improved. The notations from Figure 2275

are adopted. The resulting force and moment at the tower-top are written FN andMN . The contribution of this load to the

generalized force is fN = BN · [FN ;MN ] where, according to the virtual work principle, BN is the velocity transformation

matrix that provides the velocity of pointN as function of other DOFs. More details on this formalism are provided in Branlard

(2019a). For the single tower DOF considered, the B-matrix consists of the end values of the shape function deflection and

slope, i.e. BN = [Φt,1(Lt),0,0,0,ν1,0], where Lt is the length of the tower and ν1
4
=

dΦt,1

dz (Lt). The shape functions are280

assumed to be normalized at their extremity, i.e. Φt,i(Lt) = 1, so that the generalized force is:

fN = Fx,N + ν1My,N (21)

The main forces acting at the tower-top are assumed to the be be the aerodynamic thrust and the gravitational force from the

rotor nacelle assembly (RNA) mass, MRNA. The loads are then obtained as:

Fx,N = Ta cos(αy + θtilt), My,E = Ta [xNR sinθtilt + zNR cosθtilt] + gMRNA [xNG cosαy + zNG sinαy] (22)285

where, using Figure 2: θtilt is the tilt angle of the nacelle; NR is the vector from the tower-top to the rotor center, where the

thrust is assumed to act; NG is the vector from the tower-top to the RNA center of mass; g is the acceleration of gravity;

and αy is the y-rotation of the tower-top due to the bending of the tower(see ). For a single tower mode αy(t) = qt(t)ν1. The

linearization of Equation 21 and Equation 22 for small values of qt leads to:

fN = qt
{
−Taν1 sinθtilt + ν2

1gMRNAzNG

}
+ (Ta cosθtilt) +Taν1 [xNR sinθtilt + zNR cosθtilt] + ν1gMRNAzNG (23)290

where: the term in parenthesis is the main contribution, which justifies the use of Ta in Equation 1; the term in curly brackets

is seen to act acts as a stiffness term. The presence of Ta in this term introduce an undesired coupling and this term is kept

on the right-hand-side of Equation 1. It is noted that the vertical force Fz,N contributes to the softening of the tower. The

main softening effect attributed to the RNA mass is included in the stiffness matrix, as described in Branlard (2019a). The

contribution of the thrust to the softening, and additional contribution of quadratic velocity forces to the generalized force are295

neglected.

The other elements of the 2D model are obtained from the OpenFAST input files. The mass, stiffness and damping matrix

of Equation 1 are obtained using the YAMS library (Branlard, 2019a) which can take as input an OpenFAST model, and thus

use the same shape functions. The Velocity transformation matrices are used to convert individual component matrices (e.g.
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blades, nacelle) into the global system matrices. The mass matrix thereby comprises the inertia terms from the tower and300

RNA. The damping of the 2 DOF model was tuned based on simple “decay” simulations, to include the aerodynamic damping

contribution. The simulation used for validation consists of a linear ramp of wind speed from 0 to 10 m/s in the first 100 s,

and a sudden drop to 6 m/s at 200s200 s. The aerodynamic loads, and the generator torque are extracted from the OpenFAST

simulation and applied as external forces to the reduced order model. reduced-order model. Time series of tower-top positions,

rotational speed and tower bottom moments are compared in Figure 5. The rotational speed is well captured, indicating that
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the rotational inertia is properly set, but also indicating that the drive-train torsion does not have a strong impact for this

simulation. The overall trend of the tower-top displacements is also well captured, though more differences are present due

to missing contributions from additional blade and tower DOFs, missing non-linearities nonlinearities and quadratic velocity

forces.

The method from Section 2.5 is used to estimate the bending moments along the tower from the tower-top displacement.310

The results shown on the right of Figure 5 indicate that the overall trends and load levels are well estimated, but some offsets

are observed, which are function of height. A contribution to the moment may be missing in the current model. This will be

taken into consideration when analysing the results from the KF analysis.

4 Application to wind turbine tower loads estimation

Some of the individual models presented in Section 2 were briefly validated in Section 3. The augmented KF described in315

Section 2.3 is now used, combining the different models together with the measurements. The state and output equations given

in Equation 2 and Equation 3 are implemented. The state equation is discretized according to Equation 14 and provided to the
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KF algorithm. Results from the KF simulation, which combines a set of measurements with a model, will be referred to as “KF

estimation”. The values used for the covariance matrices, P and Q and R, are discussed in Section 5.

4.1 Ideal cases without noise320

The same simulation as the one presented in Section 3.1 is used, which extends from region 0 to region 3. The measurements

sampled at 20 Hz are here directly taken from the OpenFAST simulation and not from a field experiment. This is obviously an

ideal situation since no noise is present in the measurements. Further, the OpenFAST and KF models are based on the same

parameters such as the mass and stiffness distribution. States and tower loads estimated using the KF model are compared

with the simulation results in Figure 6. The signals are seen observed to be well estimated by the KF model over the entire
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Figure 6. Comparison of signals simulated by OpenFAST (reference) compared with the ones estimated with the KF model. From top to

bottom, dimensionless time series of: aerodynamic torque, aerodynamic thrust, tower-top displacement, Fore-Aft tower bottom moment.
325

range of operating regions. The error observed for the tower bottom moment is in the range of errors observed for the isolated

mechanical system (Section 3.3).

A turbulent simulation is run, at an average wind speed of 14 m/s with turbulence intensity of 0.14, to illustrate the differ-

ences in the power spectral density of the signals. The results are given in Figure 7 and commented further. Frequencies that

are not in the mechanical system (e.g. the second FA mode and the DT torsion) are still “captured” by the estimator via the330

measurements. The rotational speed is directly observable by the KF, so the signal is obviously well estimated. The thrust, is

estimated based on the rotational speed and thus exhibits similar frequencies as the rotational speed, which is not the case for

the reference thrust signal. The integration of the acceleration into the TT position (qt) shows a higher frequency content than

the reference signal. The second FA frequency has a strong energy content in the estimated qt signal. This frequency content

comes from the acceleration signal, but it is not sufficiently captured and damped by the model which does not represent the335

14



0 1 2 3 4
Frequency [Hz]

 P
SD

 o
f 

 [-
]

FA1 FA2DT

3p 6p 9p

0 1 2 3 4
Frequency [Hz]

 P
SD

 o
f T

a [
-]

0 1 2 3 4
Frequency [Hz]

 P
SD

 o
f q

t [
-]

0 1 2 3 4
Frequency [Hz]

 P
SD

 o
f M

y [
-]

Reference
Estimation
Estimation w/filt.
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system frequencies are marked with vertical lines: FA modes, drivetrain torsion (DT), and multiple of the rotational frequency p= 0.2.

2nd mode. A moving average filter of period 1 s was introduced to reduce the high-frequency content of the acceleration. The

results are labelled “Estimation w/filt.” on the figure. The analysis of the moment spectrum given on the right of Figure 7

indicates that the frequencies are well captured but the overall content at frequencies beyond the 1st FA mode is too high. This

is indicated by the values of the equivalent loads which are respectively 20 MNm and 30 MNm for the reference and estimated

signal, using a Wöhler slope ofm= 5. The low-pass filter on the acceleration signal greatly improves the spectrum ofMy . The340

error in equivalent loads is further quantifies quantified in the next paragraph.

4.2 Simulations with noise

The simulations presented in Section 4.1 used as measurements the simulated values from OpenFAST. In this section, a Gaus-

sian noise is added to each of the OpenFAST signals in order to account for measurement uncertainties. The noise level is taken

a 10% of the standard deviation of the signal simulated by OpenFAST. A noise level of 20% will be referred to as “Large noise”.345

Simulations were performed with OpenFAST for 10 wind speeds, with six different turbulent seeds for each wind speed. A

noise level was applied to these simulation results, prior to feeding them to the KF estimator. Cases with or without applying

the low-pass filter on the (noisy) acceleration input were tried. Results for the error in equivalent load and standard deviation

of the TB moment are shown in Figure 8. The equivalent loads are estimated using a Wöhler slope of m= 5. As expected,

the errors in standard deviation and equivalent loads follow similar trends. Errors without filtering are several fold larger than350

when the acceleration is filtered. Without noise, the equivalent loads are estimated with ±8% error. The error increases with

the noise level and the equivalent loads appear to be mostly overestimated. Further tuning of the filter and of the covariance

matrices involved in the KF may reduce the error. Further discussions are provided in Section 5.

4.3 Computational time

The framework is written in the noncompiled Python language. The code was run on a single CPU. The average computational355

time for a 10 min period of measurements at 20 Hz was 37 s. Doubling the frequencies and the number of DOF would still
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speed and turbulence seed number. Lines indicate the mean values.

keep the computational time several fold smaller than real time. The expensive part of the algorithm is the non-linear nonlinear

solve needed to find the optimal wind speed (Equation 16).

5 Discussion and future work

Measurements The results presented in the current study remained within the simulation realm. The accuracy of the method360

under uncertain conditions was partly quantified using various noise modelslevels. Yet, future work will evaluate the model

using field measurement data.

Model choices As mentioned in Section 2.3, a certain level of choice is present as to whether the loads are placed as an input

or within the state vector. A consequence is that different load models may also be implemented, for instance, models of higher

order that the one used in Equation 8. In the current study, a “random walk” force model was used for the torque, and the365

thrust was set as a dependent variable of the torque. Yet, these loads are functions of the axial inductions, which typically are

assumed to follow a second order model referred to as dynamic wake“dynamic wake”. A linearization of this model could be

applied to the aerodynamic thrust and torque and potentially improve the performance prediction of the Kalman filter.

Nonlinearities and time-invariance This study assumed a linear form of the equation of motion and that the system matrices

were time-invariant. Despite this crude assumption, reasonable results were obtained. Yet, further improvement are likely to370

be obtained if these assumptions are lifted. A simple approach would consist in updating the system matrices at some given

interval based on a slow moving average on the wind speed or the tower-top position. A more advanced method would use
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filtering methods that are adapted to non-linear nonlinear systems, such as extended Kalman filters or particles filters. This

approach would yet greatly increase the computational time. A shortcoming of the current approach is that the linear form of

the equation was established “by hand”. A more systematic approach will be considered in the future, using the linearized form375

of the state matrices returned by OpenFAST, which would include aerodynamic damping directly.

Degrees of freedom and offshore application The general formalism presented in Section 2 can be applied to more degrees

of freedom than the 2DOF model used: adding more shape function for the tower, and including side-side motion, yaw, tilt,

shaft torsion, and blade motions. The results from the 2DOF model appeared encouraging enough to limit ourselves to this

set, but future work will consider the inclusion of additional DOF. The extension of the method to offshore application could380

be done by adding extra degrees of freedom for the substructure, or, by using shape functions that represent the entire support

structure. The generalized force due to the wave loading would need to be included. This force may be modelled based on the

wind speed, or assumed of the model noise (see Section 2.3).

Model tuning Apart from the choices of degrees of freedom and model formulation, there remains a part of model tuning,

through: the choice of covariance matrices, and, the potential filtering done on the measurements. As shown in Section 4.2, the385

filtering of the acceleration was seen observed to greatly improve the performance of the model. A time constant of 1s 1 s was

chosen empirically for the filter, but this value may need to be adapted for other applications. The choice of values used for the

covariance matrices is usually the main source of criticism for KF based models. Indeed, these values have a strong influence

on the results, and they are usually tuned empirically. For the current method to be successfully applied on various wind plants,

an automatic tuning procedure is required. In the current study, the covariance matrices of the process were set automatically390

based on the value of the standard deviation of the simulated signal at rated conditions. For the measurements, these values

were divided by two. It was found that this procedure lead to satisfactory results. A sensitivity study should be considered in

future work to give further insight on the procedure, in particular if more states and measurements are used.

Wind speed estimation and standstill/idling condition The wind speed estimation model presented in Section 2.4 is limited

to cases where the turbine is operating. Also, the accuracy of this model is crucial for the determination of the thrust, which395

in turns determine the tower-top position and the tower loads. The nacelle velocity was for instance omitted in the current

study and could be considered in future studies. Wind speed estimation is a field in which the industry has a great expertise.

Improvements on the algorithm would benefit the model presented in this paper. article.

Airfoil performance The performance of the airfoils is a large source of uncertainty which was not addressed. The thrust was

determined using tabulated CT data, which may be significantly affected by the airfoil performance, which in turn are affected400

by blade erosion or other roughness sources, and, additional uncertainty on the aerodynamic modelling. Further improvement

of the model is thus required to provide an accurate determination of the thrust that would account for such unknowns. Air

density should also be considered for a correct account of the loading if a tabulated approach is used.
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6 Conclusions

The paper This article presented a general approach using Kalman filtering to estimate loads on a wind turbine, combining405

a mechanical model and a set of readily available measurements. An open source framework was established in hope to be

further applied for real-time fatigue estimation of wind turbine loads, providing inspiration for a digital twin concept. As an

example, the equations for a 2DOF 2 DOF system of a wind turbine were presented, and this system was used throughout

the article. The study focused on the estimation of tower bending moment and in particular the associated damage equivalent

load. Based on simulation results, the estimator was seen observed to be able to capture the damage equivalent loads with an410

accuracy in the order of 10%. Future work will address the following points: use of field measurements, offshore application of

the method, increased number of DOF, automatic covariance tuning, improved wind speed estimation in standstill, improved

thrust determination in off-design conditions, and use of a linearized model obtained from an aero-servo-elastic tool.

Competing interests. No competing interest are present.
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